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Sorts So Far

Best Case 
Runtime

Worst Case 
Runtime

Space Demo Notes

Selection Sort Θ(N2) Θ(N2) Θ(1) Link

Heapsort 
(in place)

Θ(N)* Θ(N log N) Θ(1) Link Bad cache (61C) 
performance.

Mergesort Θ(N log N) Θ(N log N) Θ(N) Link Fastest of these.

Insertion Sort 
(in place)

Θ(N) Θ(N2) Θ(1) Link Best for small N or 
almost sorted. 

See this link for bonus slides on Shell's Sort, an 
optimization of insertion sort.

http://algs4.cs.princeton.edu/21elementary/Selection.java.html
#
http://algs4.cs.princeton.edu/24pq/Heap.java.html
#
http://algs4.cs.princeton.edu/14analysis/Mergesort.java.html
#
http://algs4.cs.princeton.edu/21elementary/Insertion.java.html
#
https://docs.google.com/presentation/d/14RfFPU3RX9iDpE4OCXlXKmtaoxZbdNdcXTGhC9dr9xQ/edit#slide=id.g12a12f5ae1_0_98


Sorting So Far

Core ideas:
● Selection sort: Find the smallest item and put it at the front.

○ Heapsort variant: Use MaxPQ to find max element and put at the back.
● Merge sort: Merge two sorted halves into one sorted whole.
● Insertion sort: Figure out where to insert the current item.

Quicksort:
● Much stranger core idea: Partitioning.
● Invented by Sir Tony Hoare in 1960, at the time a novice programmer.



Context for Quicksort’s Invention (Source)

1960: Tony Hoare was working on a crude automated translation program for 
Russian and English. 

... ...

beautiful красивая 

... ...

cat кошка

... ...

“The cat wore a beautiful hat.”

Dictionary of D english words

N words

“Кошка носил  
красивая шапка.”

How would you do this?
● Binary search for each word.

○ Find “the” in log D time.
○ Find “cat” in log D time...

● Total time: N log D

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort


Context for Quicksort’s Invention (Source)

Limitation at the time:
● Dictionary stored on long piece of tape, sentence is an array in RAM.

○ Binary search of tape is not log time (requires physical movement!).
● Better: Sort the sentence and scan dictionary tape once. Takes N log N + D time.

○ But Tony had to figure out how to sort an array (without Google!)...

1960: Tony Hoare was working on a crude automated translation program for 
Russian and English. 

Algorithm: N binary searches of D length dictionary.
● Total runtime: N log D
● ASSUMES log time binary search!

... ...

beautiful красивая 

... ...

cat кошка

... ...

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort


Core Idea of Tony’s Sort: Partitioning http://yellkey.com/TODO

To partition an array a[] on element x=a[i] is to rearrange a[] so that:
● x moves to position j (may be the same as i)
● All entries to the left of x are <= x.
● All entries to the right of x are >= x.

5 550 10 4 10 9 330

Which partitions are valid?

i

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.

C.

B.

D.

j j

j j

Called the ‘pivot’.



The Core Idea of Tony’s Sort: Partitioning

To partition an array a[] on element x=a[i] is to rearrange a[] so that:
● x moves to position j (may be the same as i)
● All entries to the left of x are <= x.
● All entries to the right of x are >= x.

5 550 10 4 10 9 330

Which partitions are valid?

i

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.

C.

B.

D.

j j

j j

Called the ‘pivot’.



Job Interview Style Question (Partitioning)

Given an array of colors where the 0th element is white (and maybe a few more), 
and the remaining elements are red (less) or blue (greater), rearrange the array so 
that all red squares are to the left of the white square, the white squares end up 
together, and all blue squares are to the right. Your algorithm must complete in Θ
(N) time (no space restriction).
● Relative order of red and blues does NOT need to stay the same.

3 1 2 4 6 8 7 3 4 1 2 6 7 8

Example of a valid output Another example of a valid output

6 8 3 1 2 7 4

Input

6

6 6
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Partition Sort, a.k.a. Quicksort

Observations:
● 5 is “in its place.” Exactly where it’d be if the array were sorted.
● Can sort two halves separately, e.g. through recursive use of partitioning.

5 3 2 1 8 4 67

3 2 1 4 7 8 65

3 2 1 4 5 7 8 65

2 1 3 4 5 6 7 85

Q: How would we use this 
operation for sorting?



Quick Sort

Quick sorting N items: 
● Partition on leftmost item. 
● Quicksort left half.
● Quicksort right half.

32 15 2 17 19 26 41 17 17Input:

unsorted



Quick Sort

Quick sorting N items: 
● Partition on leftmost item (32). 
● Quicksort left half.
● Quicksort right half.

32 15 2 17 19 26 41 17 17Input:

partition(32)



Quick Sort

Quick sorting N items: 
● Partition on leftmost item (32). 
● Quicksort left half.
● Quicksort right half.

15 2 17 19 26 17 17 32 41Input:

<= 32 >= 32

in its 
place

partition(32)



Quick Sort

Quick sorting N items: 
● Partition on leftmost item (32) (done). 
● Quicksort left half.
● Quicksort right half.

15 2 17 19 26 17 17 32Input:

in its 
place

41

partition(32)



Quick Sort

Quick sorting N items: 
● Partition on leftmost item (32) (done). 
● Quicksort left half (details not shown).
● Quicksort right half.

partition(32)

partition(15)

partition(2) partition(17)

partition(19)

partition(17)

partition(17)

partition(26)

x x x

x

x

x x

2 15 17 17 17 19 26 32 41Input:

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

x



Quick sorting N items: 
● Partition on leftmost item (32) (done). 
● Quicksort left half (details not shown).
● Quicksort right half (details not shown).

Quick Sort

partition(32)

partition(15)

partition(2) partition(17)

partition(19)

partition(17)

partition(17)

partition(26)

x x x

x

x

x x

2 15 17 17 17 19 26 32 41Input:

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

If you don't fully trust 
the recursion, see 
these extra slides for 
a complete demo. x

https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit#slide=id.g12aaf29688_0_307


Partition Sort, a.k.a. Quicksort

32 15 2 17 19 26 41 17 17

partition(32)

15 2 17 19 26 17 17 32 41

<= 32 >= 32

in its 
place

Quick sorting N items: 
● Partition on leftmost item. 
● Quicksort left half.
● Quicksort right half.



Quicksort

Quicksort was the name chosen by Tony Hoare for partition sort.
● For most common situations, it is empirically the fastest sort.

○ Tony was lucky that the name was correct.

How fast is Quicksort? Need to count number and difficulty of partition operations.

Theoretical analysis:
● Partitioning costs Θ(K) time, where Θ(K) is the number of elements being 

partitioned (as we saw in our earlier “interview question”).
● The interesting twist: Overall runtime will depend crucially on where pivot 

ends up.
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Best Case: Pivot Always Lands in the Middle 

Only size 1 problems remain, so we’re done.



Best Case Runtime?

Only size 1 problems remain, so we’re done.

What is the best case runtime?



Best Case Runtime?

Only size 1 problems remain, so we’re done.

Total work at each level:

≈ N

≈N/2 + ≈N/2 = ≈N

≈N/4 * 4 = ≈N

Overall runtime:
Θ(NH) where H = Θ(log N)

so: Θ(N log N)



Worst Case: Pivot Always Lands at Beginning of Array

Give an example of an array that would 
follow the pattern to the right.

What is the runtime Θ(∙)?



Worst Case: Pivot Always Lands at Beginning of Array

Give an example of an array that would 
follow the pattern to the right.
● 1 2 3 4 5 6

What is the runtime Θ(∙)?
● N2



Quicksort Performance

Theoretical analysis:
● Best case: Θ(N log N)
● Worst case: Θ(N2)

Compare this to Mergesort.
● Best case: Θ(N log N)
● Worst case: Θ(N log N)

Recall that Θ(N log N) vs. Θ(N2) is a really big deal. So how can Quicksort be the 
fastest sort empirically? Because on average it is Θ(N log N).
● Rigorous proof requires probability theory + calculus, but intuition + empirical 

analysis will hopefully convince you.



Argument #1: 10% Case

Suppose pivot always ends up at least 10% from either edge (not to scale).

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100

Work at each level: O(N)
● Runtime is O(NH). 

○ H is approximately log 10/9 N = O(log N)
● Overall: O(N log N).

Punchline: Even if you are unlucky 
enough to have a pivot that never 
lands anywhere near the middle, 
but at least always 10% from the 
edge, runtime is still O(N log N).



Argument #2: Quicksort is BST Sort

5 3 2 1 8 4 67

3 2 1 4 7 8 6

2 1 4 6 8

5

3 5 7

5

3 7

2 4 6 8

1

Key idea: compareTo calls are same for BST insert and Quicksort.
● Every number gets compared to 5 in both.
● 3 gets compared to only 1, 2, 4, and 5 in both.

Reminder: Random insertion into a BST takes O(N log N) time.



Empirical Quicksort Runtimes

For more, see: http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7

Empirical histogram for quicksort compare counts (10,000 trials with N = 1000)

For N items:
● Mean number of compares to complete Quicksort: ~2N ln N
● Standard deviation: 

Lots of arrays take 12,000ish compares 
to sort with Quicksort.

A very small number take 15,000ish 
compares to sort with Quicksort.

Chance of taking 1,000,000ish compares is effectively zero.

http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7


Quicksort Performance

Theoretical analysis:
● Best case: Θ(N log N)
● Worst case: Θ(N2)
● Randomly chosen array case: Θ(N log N) expected

Compare this to Mergesort.
● Best case: Θ(N log N)
● Worst case: Θ(N log N)

Why is it faster than mergesort?
● Requires empirical analysis. No obvious reason why.

With extremely high probability!!
For our pivot/partitioning strategies: Sorted or close to sorted.



Sorting Summary (so far)

Listed by mechanism:
● Selection sort: Find the smallest item and put it at the front.
● Insertion sort: Figure out where to insert the current item.
● Merge sort: Merge two sorted halves into one sorted whole.
● Partition (quick) sort: Partition items around a pivot.

Listed by memory and runtime:

Memory Time Notes

Heapsort Θ(1) Θ(N log N) Bad caching (61C)

Insertion Θ(1) Θ(N2) Θ(N) if almost sorted

Mergesort Θ(N) Θ(N log N)

Quicksort Θ(log N) (call stack) Θ(N log N) expected Fastest sort
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Quicksort Performance

The performance of Quicksort (both order of growth and constant factors) depend 
critically on:
● How you select your pivot.
● How you partition around that pivot.
● Other optimizations you might add to speed things up.

Bad choices can be very bad indeed, resulting in Θ(N2) runtimes. 



Avoiding the Worst Case

If pivot always lands somewhere “good”, Quicksort is Θ(N log N). However, the 
very rare Θ(N2) cases do happen in practice, e.g.
● Bad ordering: Array already in sorted order (or almost sorted order).
● Bad elements: Array with all duplicates. 

What can we do to avoid worst case behavior?

Recall, our version of Quicksort has the following properties:
● Leftmost item is always chosen as the pivot.
● Our partitioning algorithm preserves the relative order of <= and >= items.

6 8 3 1 2 7 4 3 1 2 4 6 8 7



Avoiding the Worst Case

If pivot always lands somewhere “good”, Quicksort is Θ(N log N). However, the 
very rare Θ(N2) cases do happen in practice, e.g.
● Bad ordering: Array already in sorted order (or almost sorted order).
● Bad elements: Array with all duplicates. 

What can we do to avoid worst case behavior?
● Shuffle before starting.
● Go through entire array, find the median, use that as the pivot.
● Scan through one tie and check if it’s already sorted, don’t sort.

Next Monday: We’ll continue discussing Quicksort! Friday is Software Eng. II.



More Quicksort Origins

Amusingly, Quicksort was the wrong tool for the job. Two issues:
● Language that Tony was using didn’t support recursion (so he couldn’t easily 

implement Quicksort).
● Sentences are usually shorter than 15 words.
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Partition Sort, a.k.a. Quicksort

32 15 2 17 19 26 41 17 17

partition(32)

15 2 17 19 26 17 17 32 41

<= 32 >= 32

in its 
place

Run time is Θ(N log N) in the best case, Θ(N2) in the worst case, and Θ(N log N) in 
the average case.

Quicksorting N items: (Demo)
● Partition on leftmost item. 
● Quicksort left half.
● Quicksort right half.

https://docs.google.com/presentation/d/1h9qHvSlDFn0WqoxB4v6ZaeEXEepsuwVM78uO4UNeKH0/edit#slide=id.g239d559103d_1_145


Avoiding the Worst Case: Question from Last Time

If pivot always lands somewhere “good”, Quicksort is Θ(N log N). However, the 
very rare Θ(N2) cases do happen in practice, e.g.
● Bad ordering: Array already in sorted order (or almost sorted order).
● Bad elements: Array with all duplicates. 

What can we do to avoid worst case behavior?

Recall, our version of Quicksort has the following properties:
● Leftmost item is always chosen as the pivot.
● Our partitioning algorithm preserves the relative order of <= and >= items.

6 8 3 1 2 7 4 3 1 2 4 6 8 7



Avoiding the Worst Case: My Answers 

What can we do to avoid running into the worst case for QuickSort?

Four philosophies:
1. Randomness: Pick a random pivot or shuffle before sorting.
2. Smarter pivot selection: Calculate or approximate the median.
3. Introspection: Switch to a safer sort if recursion goes to deep.
4. Preprocess the array: Could analyze array to see if Quicksort will be slow. No 
obvious way to do this, though (can’t just check if array is sorted, almost sorted 
arrays are almost slow).



Philosophy 1: Randomness (My Preferred Approach)

If pivot always lands somewhere “good”, Quicksort is Θ(N log N). However, the 
very rare Θ(N2) cases do happen in practice, e.g.
● Bad ordering: Array already in sorted order.
● Bad elements: Array with all duplicates. 

Dealing with bad ordering:
● Strategy #1: Pick pivots randomly.
● Strategy #2: Shuffle before you sort.

The second strategy requires care in partitioning code to 
avoid Θ(N2) behavior on arrays of duplicates.
● Common bug, even in a well known 2010s textbook.



Philosophy 2a: Smarter Pivot Selection (constant time pivot pick)

Randomness is necessary for best Quicksort performance! For any pivot selection 
procedure that is:
● Deterministic
● Constant Time

Dangerous input

7 2 3 4 6 1 85

The resulting Quicksort has a family of dangerous 
inputs that an adversary could easily generate.
● See McIlroy’s “A Killer Adversary for Quicksort”

http://www.cs.dartmouth.edu/~doug/mdmspe.pdf


Philosophy 2b: Smarter Pivot Selection (linear time pivot pick)

Could calculate the actual median in linear time. 
● “Exact median Quicksort” is safe: Worst case Θ(N log N), but it is slower than 

Mergesort.

Raises interesting question though: How do you compute the median of an array? 
Will talk about how to do this later today.



Philosophy 3: Introspection

Can also simply watch your recursion depth.
● If it exceeds some critical value (say 10 ln N), switch to mergesort.

Perfectly reasonable approach, though not super common in practice.



Sorting Summary (so far)

Listed by mechanism:
● Selection sort: Find the smallest item and put it at the front.
● Insertion sort: Figure out where to insert the current item.
● Merge sort: Merge two sorted halves into one sorted whole.
● Partition (quick) sort: Partition items around a pivot.

Listed by memory and runtime:

Memory Time Notes

Heapsort Θ(1) Θ(N log N) Bad caching (61C)

Insertion Θ(1) Θ(N2) Θ(N) if almost sorted

Mergesort Θ(N) Θ(N log N)

Random Quicksort Θ(log N) expected Θ(N log N) expected Fastest sort
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Quicksort Flavors

We said Quicksort is the fastest, but this is only true if we make the right decisions 
about:
● Pivot selection.
● Partition algorithm.
● How we deal with avoiding the worst case (can be covered by the above choices).

Suppose we run a speed test of  Mergesort vs. Quicksort from last time, which had:
● Pivot selection: Always use leftmost.
● Partition algorithm: Make an array copy then do three scans for red, white, and 

blue items (white scan trivially finishes in one compare).
● Shuffle before starting (to avoid worst case).

We’ll call this Quicksort L3S



Quicksort vs. Mergesort

Quicksort didn’t do so well!

Pivot Selection 
Strategy

Partition
Algorithm

Worst Case 
Avoidance 
Strategy

Time to sort 1000 
arrays of 10000 ints

Mergesort N/A N/A N/A 1.3 seconds

Quicksort L3S Leftmost 3-scan Shuffle 3.2 seconds

Note: These are unoptimized versions of mergesort and 
quicksort, i.e. no switching to insertion sort for small arrays. 



Tony Hoare’s In-place Partitioning Scheme

Tony originally proposed a scheme where two pointers walk towards each other.
● Left pointer loves small items.
● Right pointer loves large items.
● Big idea: Walk towards each other, swapping anything they don’t like.

○ End result is that things on left are “small” and things on the right are 
“large”.

(Note: The demo we'll show is not the exact scheme Tony used)

Using this partitioning scheme yields a very fast Quicksort.
● Though faster schemes have been found since.
● Overall runtime still depends crucially on pivot selection strategy!



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 19 32 2 26 41 17 17Input:

L G



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 19 32 2 26 41 17 17Input:

L G

Hello, lovely 15.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 19 32 2 26 41 17 17Input:

L G

Grrr…… 19



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap.

17 15 19 32 2 26 41 17 17Input:

L G

I dislike 17.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 19 32 2 26 41 17 17Input:

L G

Time to swap.Time to swap.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 17 32 2 26 41 17 19Input:

L G

Swapped.Swapped.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 17 32 2 26 41 17 19Input:

L

Immediate trouble.

G



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
● When pointers cross, you are done.

17 15 17 32 2 26 41 17 19Input:

L G

Trouble here, too.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 32 2 26 41 17 19Input:

L G

Time to swap.Time to swap.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

L G

Swapped!Swapped!



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

L G

2 is cool.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

L G

26 is grossly large.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

L G

41 is fine.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

L
G

26 is fine.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

LG

2 is no good… 
also hi L!!



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

LG

2 is no good… 
also hi L!!



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

17 15 17 17 2 26 41 32 19Input:

LG

Time to swap.Time to swap.



Hoare Partitioning

Create L and G pointers at left and right ends.
● L pointer is a friend to small items, and hates large or equal items.
● G pointer is a friend to large items, and hates small or equal items.
● Walk pointers towards each other, stopping on a hated item.

○ When both pointers have stopped, swap and move pointers by one.
○ When pointers cross, you are done walking.

● Swap pivot with G.

2 15 17 17 17 26 41 32 19Input:

LG

Old pivot.
New pivot.New pivot.

Swapped.Swapped.



Quicksort vs. Mergesort

Using Tony Hoare’s two pointer scheme, Quicksort is better than mergesort!
● More recent pivot/partitioning schemes do somewhat better. 

○ Best known Quicksort uses a two-pivot scheme.
○ Interesting note, this version of Quicksort was introduced to the world by 

a previously unknown guy, in a Java developers forum (Link).

Pivot Selection 
Strategy

Partition
Algorithm

Worst Case 
Avoidance 
Strategy

Time to sort 1000 
arrays of 10000 ints

Mergesort N/A N/A N/A 1.3 seconds

Quicksort L3S Leftmost 3-scan Shuffle 3.2 seconds

Quicksort LTHS Leftmost Tony Hoare Shuffle 0.9 seconds

Note: These are unoptimized versions of mergesort and 
quicksort, i.e. no switching to insertion sort for small arrays. 

https://web.archive.org/web/20100428064017/http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628


What If We Don’t Want Randomness?

Our approach so far: Use randomness to avoid worst case behavior, but some 
people don’t like having randomness in their sorting routine.

Another approach: Use the median (or an approximation) as our pivot.

Four philosophies:
1. Randomness: Pick a random pivot or shuffle before sorting.
2. Smarter pivot selection: Calculate or approximate the median.
3. Introspection: Switch to a safer sort if recursion goes to deep.
4. Try to cheat: If the array is already sorted, don’t sort (this doesn’t work).

This is what we’ve been using.



Philosophy 2a: Smarter Pivot Selection (linear time pivot pick)

The best possible pivot is the median.
● Splits problem into two problems of size N/2.

Obvious approach: Just calculate the actual median and use that as pivot.
● But how?

Goal: Come up with an algorithm for finding the median of an array. Bonus points 
if your algorithm takes linear time.



Philosophy 2a: Smarter Pivot Selection (linear time pivot pick)

Goal: Come up with an algorithm for finding the median of an array. Bonus points 
if your algorithm takes linear time.
● Sort the array, return the middle item. Takes Θ(N log N) time to sort, though.



Median Identification

Is it possible to find the median in Θ(N) time?
● Yes! Use ‘BFPRT’ (called PICK in original paper).
● Algorithm developed in 1972 by a team including my former TA, Bob Tarjan 

(well before I was born). 
● In practice, rarely used.

Historical note: The authors of this 
paper include FOUR Turing Award 
winners (and Vaughan Pratt)

Let’s see how Exact Median Quicksort performs.

http://www.cs.princeton.edu/~wayne/cs423/lectures/selection-4up.pdf


Quicksort vs. Mergesort

Pivot 
Selection 
Strategy

Partition
Algorithm

Worst Case 
Avoidance 
Strategy

Time to sort 1000 
arrays of 10000 
ints

Worst Case

Mergesort N/A N/A N/A 1.3 seconds Θ(N log N)

Quicksort L3S Leftmost 3-scan Shuffle 3.2 seconds Θ(N2)

Quicksort LTHS Leftmost Tony Hoare Shuffle 0.9 seconds Θ(N2)

Quicksort PickTH Exact Median Tony Hoare Exact Median 4.9 seconds Θ(N log N)

Quicksort using PICK to find the exact median (Quicksort PickTH) is terrible!
● Cost to compute medians is too high.
● Have to live with worst case Θ(N2) if we want good practical performance.

Note: These are unoptimized versions of mergesort and 
quicksort, i.e. no switching to insertion sort for small arrays. 
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Quick Select 
(median finding)



The Selection Problem

Computing the exact median would be great for picking an item to partition 
around. Gives us a “safe quick sort”.
● Unfortunately, it turns out that exact median computation is too slow.

However, it turns out that partitioning can be used to find the exact median.
● The resulting algorithm is the best known median identification algorithm.



Quick Select

Goal, find the median:

Partition, pivot lands at 2.
● Not the median. Why?
● So what next?

Now pivot lands at 6. 
● Not the median.

Partition right subproblem, median can’t be to the left!

Pivot lands at 4. Are we done?
● Yep, 9/2 = 4.

550 14 10 33054 817 913

14 10 330 55054 817 913

6 5 9 550 14 10 330 817 913

9 550 14 6 10 5 330 817 913

14 10 33054 4 4 5

10 14 33054 4 4 5



Worst case performance?

What is the worst case performance for Quick Select? Give an array that causes 
this worst case (assuming we always pick leftmost item as pivot).



Worst case performance?

What is the worst case performance for Quick Select? Give an array that causes 
this worst case (assuming we always pick leftmost item as pivot).

Worst asymptotic performance Θ(N2) occurs if array is in sorted order. 

[1 2 3 4 5 6 7 8 9 10 … N]
[1 2 3 4 5 6 7 8 9 10 … N]
[1 2 3 4 5 6 7 8 9 10 … N]
…
[1 2 3 4 5 … N/2 … N]



Expected Performance

On average, Quick Select will take Θ(N) time.
● Intuitive picture (not a proof!):

~N compares

~N/2 compares

~N/4 compares

On average, 
pivot ends up 
about halfway

N + N/2 + N/4 + … + 1 = Θ(N)



Quicksort With Quickselect?

Quicksort with PICK to find exact median was terrible.

What if we used Quickselect to find the exact median? 
● Resulting algorithm is still quite slow. Also: a little strange to do a bunch of 

partitions to identify the optimal item to partition around.

Pivot 
Selection 
Strategy

Partition
Algorithm

Worst Case 
Avoidance 
Strategy

Time to sort 1000 
arrays of 10000 
ints

Worst Case

Mergesort N/A N/A N/A 1.3 seconds Θ(N log N)

Quicksort L3S Leftmost 3-scan Shuffle 3.2 seconds Θ(N2)

Quicksort LTHS Leftmost Tony Hoare Shuffle 0.9 seconds Θ(N2)

Quicksort PickTH Exact Median Tony Hoare Exact Median 4.9 seconds Θ(N log N)


